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Abstract

In this paper, Green functions for an infinite piezoelectric media with an elliptic piezoelectric inhomogeneity are
given for a generalized electro-mechanical force and a generalized electro-mechanical line dislocation that may be
located outside, inside or on the interface of elliptic boundary of inhomogeneity. Expressions of Green functions are
identical when the generalized force and the generalized dislocation approach to the elliptic boundary from points
outside or inside the inhomogeneity. The interaction electric enthalpy between the inhomogeneity and the dislocation is
given, which can be used to find the interaction force on the dislocation owing to the existence of the inhomogeneity.
Numerical illustrations for the interaction forces are also given and some discussions on the effects of the material
mismatches on the interaction forces are made. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric ceramics are widely used as actuators, sensors and transducers, etc. due to the inherent
coupling between their electric and mechanical behavior. Defects such as dislocations, inhomogeneities and
cracks inevitably exist in the manufacturing process of materials. When they are subjected to high operating
loading and electric voltage, the reliability problem arises in the application of these materials to engi-
neering devices. Therefore it is of great importance to study the electromechanical behavior of piezoelectric
materials with defects. Many efforts have been devoted to this field. Deeg (1980) and Pak (1992) analyzed
the piezoelectric cracks by a distributed dislocation method. Sosa (1991), Sosa and Khutoryansky (1996)
investigated the plane deformation problem of an infinite piezoelectric media with an elliptical void. Wang
(1992) conducted an analysis for piezoelectrics with an ellipsoidal inhomogeneity. Chung and Ting (1996)
also solved the inclusion problem in piezoelectrics. Researches on the elastic interactions between the
dislocation and the inhomogeneity can be found in many papers such as Dundurs and Mura (1964),
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Dundurs and Gangaharan (1969), Warren (1983), Santare and Keer (1986) and Stagni (1995, 1999). Barnett
and Lothe (1996) studied the Peach—Koehler image force for a straight dislocation parallel to the interface
of two perfectly bonded dissimilar linear elastic half-spaces. They proved that for “proportional” aniso-
tropic bimaterial, i.e. cl(})] = chfk),, the dislocation is repelled from the interface when it resides in the
elastically softer of the two half-spaces and is attracted to the interface when it resides in the stiffer half-
space. The analysis for dislocations in an anisotropic elastic media with an inhomogeneity was elaborated
in a series of papers by Hwu and Yen (1993), Yen and Hwu (1994), Yen et al. (1995) and Ting (1996a,b).
Recently Deng and Meguid (1998, 1999) conducted an analysis for a screw dislocation in a piezoelectric
media. Liang and Hwu (1996), Liu et al. (1997) and Lu and Williams (1998) gave the Green function for a
piezoelectric material with an elliptic hole. Pak (1990) studied the force on a piezoelectric screw dislocation.
However, to the author’s knowledge, the analysis for the interaction of a generalized dislocation interacting
with an inhomogeneity in piezoelectric materials has not been reported yet.

The solution of a dislocation inside a piezoelectric media with an inhomogeneity can be served as a
kernel function in the distributed dislocation method for solving crack problems. The solution can also be
used in the boundary element method as a basic solution function. Furthermore the behavior of disloca-
tions is also of great importance in material science. In Section 2, we will present basic equations. Following
Ting’s work (1996a,b), in Sections 3 and 5, we give the solutions of an electro-mechanical dislocation that
may be located outside, inside the inhomogeneity or on the interface of elliptic boundary of inhomogeneity.
The detailed deduction procedure is omitted and the electro-mechanical force is also taken into account.
The interaction electric enthalpy between dislocation and inhomogeneity is developed in Section 5. Nu-
merical illustrations for the interaction forces are shown in Section 6 and some discussions on the effects of
the material mismatches between the matrix and the inhomogeneity are made. Finally, a conclusion is made
for the paper.

2. Basic equations

In a fixed rectangular coordinate system (x;,x,, x3), the constitutive equations for linear piezoelectrics of
the second kind can be written as

0y = Cijuthiy + €1 1 Di = ety — K@ 4, (i,),k, 1 =1,2,3), (1)

where repeated Latin indices mean summation and a comma stands for partial differentiation. ¢;; are the
elastic stiffnesses under constant electric field, e;; the piezoelectric constants, and k;; the permittivity under
constant strain field. o;;, u;, D;, ¢ are stress, displacement, electric displacement and electric potential, re-
spectively. Here we only address generalized two-dimensional deformation problem in (x, x,)-plane, i.c. all
the variables are constant along the x3-axis. The poling axis is directed along the x,-axis. Following Suo
et al. (1992), Chung and Ting (1996) and Kuang and Ma (2001) a general displacement solution can be
obtained by considering an arbitrary function of linear combination of four complex analytical functions,

u= { 1;; } = 2Im; a,/,(z,) = 2Im{A(f(z,))q}, 2

where ¢ is an unknown constant vector to be determined. The generalized stress function which is a gen-
eralized resultant forces on an arc, can be represented as

D(z) = 2ImZbaf1(za) = 2Im{B(/f(z.))q}, 3)
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where z, = x; + p,x, and ®;, j = 1,2, 3 represent the components of resultant force and ®, is the electric
displacement flux on a curve. In the above f,(z,) = ¢,/ (z,) is assumed and ‘ITm’ stands for imaginary part. A
and B are 4 x 4 complex matrices defined by

A= [31732,33734], B= [b17b27b37b4]7
and ( ) stands for a 4 x 4 diagonal matrix, e.g.
(f(z2)) = diag[f (21), /(22), f (z3),.f (za)]-

The eigenvalues p, and eigenvectors a, are determined by the following equation:

Q-+ (R+R")p+Tp’Ja=0, (4)
where
Q" ey } [RE € ] {TE €n ]
= s R = , = s 5
Q |:e1F1 —K1 el —kn e, —Kkn (3)

E E
0 =ciam, Ri=cua, Ty =con, (&), =eys,

and the eigenvectors b, can be obtained from the following relations,

1
b, = (RT +paT)a“ = _;(Q ersz)aa' (6)
The generalized stresses are as follows:
09; /
2y(z) = {022]} =®; =2Im{B(f'(z,))q}, (7a)
Z]J(Z) = {glj} = —(sz = —ZIm{B@xf’(zx))q} (7b)

For stable materials the eigenvalues cannot be real, and here we only consider non-degenerate materials
whose eight eigenvalues p,, p, (x = 1,2,3,4) are distinctive. Not losing generality the imaginary part of p,
(0 =1,2,3,4) is taken to be positive.

After the normalization for the eigenvectors A and B, i.e.

ATB+BTA =1,
the piezoelectric Barnett—Lothe tensors can be written as

S =i(2AB" — 1), H=2iAA", L= -2iBB’, (8)
and the impedance matrix and its inverse are listed as follows:

M=—BA'=H'+iH'S, M'=iAB' =L —iSL™". (9)

3. Green function for the dislocation outside the elliptic inhomogeneity

Consider an elliptical piezoelectric inhomogeneity imbedded in an infinite piezoelectric matrix. The in-
homogeneity is assumed to be perfectly bonded with the matrix along the interface. The ellipse equation is
given by

X| =acosy, x;=bhsiny,
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where 2a and 2b are the length of the major and minor axes of the ellipse, respectively, and y is a real
parameter.
The mapping function

Zy = caz.:zx + dac;la (10)
where

. _a—ipb d_a—|—ipxb

o 2 ) o T 2

will transform ellipse into a unit circle. The inverse mapping is taken to be

zy + /22 — 4c,d,
=—Yv = 11
et (1)

Hwu and Yen (1993) and Ting (1996a,b) pointed out that the mapping is one-to-one for points outside the
ellipse in the z,-plane to points outside the unit circle in the {,-plane. The transformation function maps the
interior of the ellipse with a branch cut connecting two points z,; = 2v/c,d, and z,, = —2+/c,d, in the z,-
plane into the interior of the unit circle with a deprivation of the circle of radius |\/#,| = [\/d,/c,| in the {,-
plane. Detailed discussion on the properties of the mapping function can be consulted from Ting (1996a,b).

Let the generalized line force f* and generalized line dislocation b* be applied at (x%,x9), where
" =, f4) = (1, /5. /5, /1), fi (i=1,2,3) represents a line force component of f and f; a line charge,
b* = (b, bs) = (b1,b2,b3,b4), b; (i =1,2,3) is the component of Burgers vector b and b, represents an
electric dipole layer along the slip plane (Barnett and Lothe, 1975). Care should be taken to the discrimi-
nation of the half-minor axis » and the Stroh vector b;, (J = 1,2,3,4) and the Burgers vector b.

Liang and Hwu (1996) stated that without detailed rederivation, the analytical solutions for anisotropic
elastic problems can be readily extended to those for piezoelectric materials for two-dimensional problems.
So following that of Ting (1996a,b) by extending the sextic Stroh formalism to the octet formalism, the
Green function for dislocation outside the inhomogeneity is given as

o= m{ (7))} w3 (om0
p=1
+%Img %{B“)<(C§”>_k>gk} (12)

for material 1 outside the inhomogeneity, and
0o _ 1S (po @ _ 30\ 4 LS L g/ @
®; @) =—Im_ {B <ln (zd - zw)>qﬂ } +—Im %{B <ko >hk} (13)
p=1 =1

for material 2 inside the inhomogeneity. The superscripts (1), (2) stand for material 1, 2, respectively. The
generalized displacement function u; can be obtained when B, is replaced by A; in Egs. (12) and (13), so can
u,. In Egs. (12) and (13)

7= () + @) ()

-1
W+ p0) = = = 0+ ()
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A A N P Y P
b +p“ X, = Zyg :C£<>§ﬁ0 +do(()(C/3()> ,
—~off

~up . . .. . . . .. .
x, ,x, ) correspond to sixteen singularities after the mirror image singularities being mapped back to the

physmal plane for matenal 2., The sixteen 1rnage singularities for material 1 can be found by solvmg

+pa =2 = C; +d! C;m) for (x},x3). Constant vectors qi°, q5°, 4, 4, g,. hy, @9, u) are

glven in Appendix A The Vahdlty of the solution can be proved by directly substltutlng Eqgs. (12) and (13)
into the basic equations.

4. Green function for the dislocation inside the elliptic inhomogeneity and on the elliptic boundary respectively

When the dislocation is located inside the inhomogeneity, analogous to that of Ting (1996a,b), the Green
function can be written as

{< (- S o (o))
s}

k=1

o001~ (10 (2 £) s} LS5 (2 22)) (47 )

where
-1
x(l) +pa(c2)‘xg i :x zocO + d (C ) ’
& ) R —(2)\ ~ =(2)
/i 4l xzﬁ o Z(ﬁ) = (C/m) + do(cZ)C/iO'

The z zw are sixteen image singularities for material 2. The smteen image singularities for material 1 can be

~a ~(1 - —~0
found by solv1ng X, X + pl! )xzﬁ = ziﬁ) = +df! (( >) for (xlﬁ,x2 ) Constant vectors q;°, q5°, qj;,
qﬂ , 8 hy, @Y, uf are given in Append1x A
For the dislocation located on the elliptic boundary
X =acosy,, x5=bsiny,,

with Eqgs. (12) and (13), the Green functions for material 1 and 2, respectively are,

o = talo (o ) o L ) o
+%Im§;{%B<1><<€§1>>‘k>gk}, (16)

@, — O = %Im{B(2)< In (2 ) iq}f)} —i—%lmi %{B<2><‘f,f§>>hk}. (17)

k=1
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Ting (1996a,b) also proved that the limits of the solutions which deduced from the forces and dislocations
inside or outside the inhomogeneity are identical with those located on the elliptic boundary for an an-
isotropic material. The present solution accounts for all the imaginary singularities so it has the same
property as that of anisotropic elastic problem. As pointed out by Ting (1996a,b), the solution obtained by
Deng and Meguid (1998, 1999) following the lines of Yen and Hwu (1994) and Yen et al. (1995), lost the
image singularities, so their solutions may converge slowly or even diverge for points near the missing
image singularities when the dislocation approaches the elliptic boundary.

5. Interactions between the dislocation and the inhomogeneity

Following the Eshelby’s (1956), the material force can be defined as the negative gradient of the total
mechanical and electrical energy with respect to the position change of the defect. In this paper we take the
electric enthalpy instead of the internal energy. According to the thermodynamic definition the material
force can be deduced as the negative gradient of the electric enthalpy. In the absence of applied electro-
mechanical loading, the total electric enthalpy of the system is equal to the mechanical work plus the
electric work required to introduce the dislocation from infinity to the point (x},x3) where the dislocation is
located. In an analogy to Yen and Hwu (1994) and Pak (1990), the total electric enthalpy can be written as

1 A
Hio == / (bio2i + bsDy) dx, (18)

2 ?+(3

where A is a large value and ¢ a small one and their mapping values A, and 9, still represent large and small
values, respectively. When the dislocation is outside the inhomogeneity, noting that Eq. (7a), we get

1 T Zil):/l“
*
Ho=5bT0| (19)
z£>:zgo+0}
where
D,

=4, 1 A )

=-Im{BY{ In" 2 g +BY{ In|1—-—2—|)q°
m_.s T B ! (1) #(1) 1
7, =z, 10, o CaO o0

4 o]
1 1 —k
0 (1) n/
E B! <1n 1 =G >qﬁ ;1 %B< <gz0> g 0. (20)

p=1 %0 S0

By excluding the singularities caused by the dislocation, we get the interaction enthalpy for the dislocation
located outside the inhomogeneity

=" B<1><1n (1 5 >>Q°° 24:3<1)< n(1-— >q(”
int — "~ _ T oD () 1 T =1 B
2n oy =1 ci}fz;(f

-3 () e (21)

. , (22)
ziz) :zizz)+¢)'x
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z(]):/lx

o

@ _
o

=2 1 =1
_ _Im{B<1><1n A,)q7 =B (Ino,)qz =Y B (£ )y

ziz) = zi;;) +0y T f—1

0, + @,

A 0

4
2) .2 2 o
- Z B(2)< In (220) - Z;/f)) > (q§;> —Ipq; )
f=1

4
+> (=) [ - BV + BLex — B g ] }
f=1

z{l*, z2)* are the points on the interface and the continuity conditions of the interface are adopted in the
above deductions. Just as the manipulations for the dislocation located outside the inhomogeneity, the
interaction enthalpy for the dislocation inside the inhomogeneity can be written as

bt > 1 2 2 2 .2 2 ~
Hine = Zlm{ _ ; LB/, ;B<z>< in (=3 = 22) ) (a” = a5
- 2 1
+> (=) [~ BV + BULg - BVl } (23)
p=1

The generalized interaction force per unit length F in the s direction on the dislocation can be written as

aHim
F=— 24
os ’ (24)

which is very complicated and a numerical calculation will be conducted in the next section.

6. Numerical examples and discussions

In this section the solutions obtained in the foregoing sections are used to find the interaction forces
applied to the dislocation due to the existence of the inhomogeneity. The aspect ratio of the ellipse is 1/3 for
all numerical examples. We first give the contour plots of the glide and climb forces for the dislocation
located inside the PZT-5H matrix with an epoxy, an isolating void and a rigid conductor inhomogeneity,
respectively. Then we will investigate the effect of different elastic, piezoelectric and dielectric mismatches on
the interaction forces, respectively.

6.1. Contour plots of the interaction forces for practical engineering material pairs

In available literatures, material constants are measured in the material coordinate system (Xj, X, X3)
where the poling axis is X3. In this coordinate system, material constants for PZT-5H and epoxy, which are
taken to be the first material pair, are listed as follows:

PZT-5H matrix (Kuo and Huang, 1997):

) =126 GPa, ¢y =117 GPa, ¢} =35.3 GPa, c!) =55 GPa, (! = 53 GPa,
) =—65cem2 ) =233 cm2 el =17.0cm2, &) =151 x10° C*N"'m2,

K =13.0x10° C*N'm™2
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Epoxy inhomogeneity (Dunn and Taya, 1993):

¥ = 6.43 GPa, c{J) =6.429 GPa, c{) =1.07 GPa, c\J =4.29 GPa, 2 =4.289 GPa,
e =y =efd =0em™, k) =50x 107 C*N'm?, «§} =5.001 x 10° C*N'm.

) 3

For epoxy material constants, small perturbations have been performed to avoid repeated eigenvalues.
Since in Section 2 we take the poling axis to be along the x,-axis, the corresponding relationship between
(X],Xz,Xj,) and (X],X2,X3) iS

X3 —x, Xi—xi, Xp—xs.

Hence the matrices Q, R, T defined in Eq. (5) for a transversely isotropic piezoelectric material are as
follows:

C11 0 0 0 0 C13 0 €31 Caq 0 0 0

Q _ 0 Cy4 . E)c €1s , R = Cy4 0 0 0 7 T=— 0 C33 0 €33 7
0 0 =35 0 0 0 0 O 0 0 cu 0
0 €15 0 —Ki1 €15 0 0 0 0 €33 0 —K33

where the material constants are measured in the (X;, X, X3) coordinate system.
We suppose an imaginary inhomogeneity whose material constants are proportional to those of the
matrix, i.e.

(2) (2) 2
C:: e K.
ikl Cujp K

By letting K — 0 and K — oo, the material pairs can be used to simulate a matrix containing an isolating
void and a conducting rigid inhomogeneity respectively. In our program the ratios are taken to be K =
0.001 and K = 1000, respectively, which are taken to be the second and the third material pairs.

From dimensional analysis, L;; in Eq. (8) has a dimension of N/m?, and we choose the non-dimen-
sionalized factor to be L;; x 10~ m/4x for the interaction forces. In our calculation, the electric dislocation
(ED) and the mechanical dislocation (MD) are assumed to be located at the same position. Three cases are
considered, i.e. by =2b, by =0; by =0, by = 2b x 10° V/m and b, = 2b, by = 2b x 10° V/m while all the
other dislocation components are supposed to be zero. To the authors’ knowledge, there are no numerical
solutions for interaction forces for a piezoelectric dislocation interacted with an inhomogeneity. Therefore
the correctness of the routine programmed by the authors was verified by comparing the results by Yen and
Hwu (1994) for an anisotropic media without electric components. The influence of the interaction forces
caused by the ED on the MD is obtained by the assumption that the ED moves along with the MD. In the
present text, moving directions of the dislocation are presumed to be along the x;-axis and the x,-axis.
Hence from Eq. (24) the dimensionless glide force applied on the dislocation along the slip direction ox; and
the dimensionless climb force along the direction ox, can be written as

47'( aHint

F=- x 10°, F, =
1 Lllaxl ) 2

dn aHint

— 10°. 2
L. on x 10 (26)

Decompose F; and F> into three terms, i.e. terms containing b? , b7 and b, by, respectively,
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F = Fui (b]) + Fiaa(b3) + Fiis(bibs),  Fo = Foii(b7) + Fasa(b3) + Foua(b1bs). (27)

The interaction forces Fiy;(b?) and Fayy(b?) are produced by the MD only, Fiu(b3) and Fa(b3) by the ED
only, and Fji4(b1bs) and Fy4(b1by) are the coupling terms between the MD and the ED. Fj;; and Fy; are
even functions of b, and Fjy4q and Fyyy 1s even function of b4. The sign change of 5, and b4 will influence the
coupling terms Fj4 and Fyy4, but not Fyy, Fiag, F>1; and Fay,.

In all plots the positive interaction glide forces denote that the dislocation is repelled from the x,-axis; the
negative ones denote that the dislocation is attracted to the x,-axis. The foregoing statement also applies
to the interaction climb forces once the x,-axis is replaced by the x;-axis. In all numerical results, the glide
force F, is zero when the dislocation is on the x,-axis and the climb force F> is zero when the dislocation is
on the x;-axis, which can be explained by the symmetry of the material properties and the geometric
configuration. The position where F) is zero is an equilibrium one for the glide forces and it is the same case
for the climb forces when F, = 0. The stability of the equilibrium is determined by the attraction or re-
pulsion condition around the equilibrium position. For example, in Figs. 1a and 4a, the x,-axis is a stable
equilibrium position for the glide component of the interaction forces; in Figs 1b and 4b the x;-axis is a
stable equilibrium position for the climb component of the interaction forces. The ED either enhances or
weakens the interaction between the inhomogeneity and the MD depending on the mismatch of the ma-
terial pairs and the position where the dislocation located. In all contour plots, when the MD or the ED
approaches the inhomogeneity, the absolute value of interaction forces increases. When the dislocation is
away from the inhomogeneity, the absolute value decreases which means that the influence of the inho-
mogeneity diminishes.

Figs. 1-9 show the contour diagrams for an epoxy inhomogeneity, an isolating void and a rigid con-
ductor, respectively. Comparing Figs. 1-3 and Figs. 4-6, it is seen that the contour plots for an isolating

X,/2b Xf2b

Fig. 1. (a) Contour plots of the dimensionless glide force F; for PZT-5H matrix containing an epoxy inhomogeneity with
b*/2b = {1,0,0,0}. (b) Contour plots of the dimensionless climb force /> for PZT-5H matrix containing an epoxy inhomogeneity with
b*/2b = {1,0,0,0}.
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(@) (b)
5 T T T T T T T T T 5 T T T T

-0.0001 b b

0.000 b b

X/2b
v
x/2b
Y.
.J
=
o
=

0.001 0.008 1
1177 0.006 1 /
0 T T T T T 0 _\I T I/
0 1 2 3 4 5 0 1 2 3 4 5
X, /2b x,/2b

Fig. 2. (a) Contour plots of the dimensionless glide force F; for PZT-5H matrix containing an epoxy inhomogeneity with
b*/2b = {0,0,0,10°}. (b) Contour plots of the dimensionless climb force F; for PZT-5H matrix containing an epoxy inhomogeneity
with b*/26 = {0,0,0, 10°}.

0

0.0 0l.5 1I.0 1I.5 2I.0 2I.5 3I.0 3I.5 4I.O 4I.5 5.0
X1/2b X1/2b
Fig. 3. (a) Contour plots of the dimensionless glide force F; for PZT-5H matrix containing an epoxy inhomogeneity with

b*/2b = {1,0,0, 10°}. (b) Contour plots of the dimensionless climb force F for PZT-5H matrix containing an epoxy inhomogeneity
with b /2b = {1,0,0,10°}.

void differ a little from those for an epoxy and the influence by an isolating void on the interaction forces is
a little greater than that by an epoxy inhomogeneity. It can also be observed that the interaction forces
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X,/2b x,/2b

Fig. 4. (a) Contour plots of the dimensionless glide force £, for PZT-5H matrix containing an isolating void with b*/2b = {1,0,0,0}.
(b) Contour plots of the dimensionless climb force F> for PZT-5H matrix containing an isolating void with b*/2b = {1, 0,0, 0}.

x,/2b x,/2b

Fig. 5. (a) Contour plots of the dimensionless glide force F; for PZT-5H matrix containing an isolating void with b*/2b = {0, 0,0, 10°}.
(b) Contour plots of the dimensionless climb force > for PZT-5H matrix containing an isolating void with b*/2b = {0, 0,0, 10°}.

caused by the ED on the MD is small for both the isolating and the epoxy inhomogeneity. However, for the
rigid conductor (Figs. 7-9) the ED significantly alters the interaction forces of the MD especially for the



8470 Z. Huang, Z.-B. Kuang | International Journal of Solids and Structures 38 (2001) 8459-8479

X1/2b X1/2b

Fig. 6. (a) Contour plots of the dimensionless glide force Fj for PZT-5H matrix containing an isolating void with b*/2b = {1,0,0, 10°}.
(b) Contour plots of the dimensionless climb force F> for PZT-5H matrix containing an isolating void with b*/2b = {1,0,0, 10°}.

4 i
3
8 0.016
o
2 4
0.064
14 i
0 \l T T T
0 1 2 3 4 5
x,/2b x,/2b

Fig. 7. (a) Contour plots of the dimensionless glide force F; for PZT-5H matrix containing a rigid conductor with b*/25 = {1,0,0,0}.
(b) Contour plots of the dimensionless climb force /> for PZT-5H matrix containing a rigid conductor with b*/2b = {1,0,0,0}.

climb forces (Fig. 9). In the plotted region of Figs. 1 and 4, the interaction forces are all negative which
means the inhomogeneity always tends to attract the MD. If there exists an ED only, the glide interaction
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x,/2b x,/2b

Fig. 8. (a) Contour plots of the dimensionless glide force F; for PZT-5H matrix containing a rigid conductor with b*/2b = {0,0,0,10°}.
(b) Contour plots of the dimensionless climb force F> for PZT-5H matrix containing a rigid conductor with b*/2b6 = {0,0,0, 10°}.

NN

T T T T T T T T T
00 05 10 15 20 25 3.0 35 40 45 50
x,/2b X/2b

Fig. 9. (a) Contour plots of the dimensionless glide force F; for PZT-5H matrix containing a rigid conductor with b*/2b = {1,0,0,10°}.
(b) Contour plots of the dimensionless climb force /> for PZT-5H matrix containing a rigid conductor with b*/2b = {1,0,0, 10°}.

forces may be positive or negative depending the position of the ED (Figs. 2a and 5a) and the climb forces
are positive (Figs. 2b and 5b), which means that the ED may be repelled or attracted by the x,-axis and it is
always repelled by the x;-axis in this case.
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6.2. Investigation of the influences of the material mismatches on the interaction forces

The above subsection is devoted to the material pairs in practical engineering applications. To investi-
gate the effect of the elastic, piezoelectric and dielectric mismatches on the interaction forces, respectively,
we define three material constant ratios namely the elastic, piezoelectric and dielectric ratio,

@ @) @
k _ Cijm k _ i k _ i
© T mo Ty M

ikl lij ij

If ke > 1, k, > 1 and kq > 1, respectively, we say, the inhomogeneity is elastically, piezoelectrically and
dielectrically harder than the matrix, otherwise, softer. In the following computation, by varying one of the
mismatch ratios while keeping the other two equal to 1, we can investigate the interaction forces with
respect to the variations of the above mismatch constants, respectively. Here the interaction forces are
plotted for the dislocation located both inside and outside the inhomogeneity. Figs. 10a—16a show the glide
forces when the dislocation is on the x;-axis and Figs. 10b—16b show the climb forces when it on the x,-axis.
From Figs. 10-16, the interaction forces on the dislocation can be closely observed when it passes through
the interface along the coordinate axes. When the MD is near the interface, the interaction forces approach
infinite. This is due to the simplification of a singular dislocation in a elastic continuum involving a sharp
change in the material constants (Dundurs and Gangaharan, 1969). The interaction forces are zero at the
origin (at the center of the elliptical inhomogeneity). When the dislocation is inside the inhomogeneity,
generally, the absolute value of the interaction forces monotonously increases as the dislocation ap-
proaching the interface (except Fig. 14). When the dislocation is outside the inhomogeneity, the absolute
value of the interaction forces monotonously decreases as the dislocation leaving the interface. The in-
teraction force approaches zero when the dislocation is far away from the inhomogeneity.

6.2.1. Case for a single MD only (Figs. 10-12)

For the case that there is no ED and exists a single MD only, we can observe from Fig. 10 that the higher
the elastic mismatch ratio, the larger the interaction forces. It is the same for the piezoelectric mismatch
ratio (Fig. 11) but opposite for the dielectric mismatch ratio (Fig. 12).

Mk <1, k<1, k>1.

It can be observed from Figs. 10-12 that the MD is attracted by the x;-axis and the x,-axis no matter the
MD is located inside or outside the inhomogeneity, which suggest that the elastically, piezoelectrically
softer and dielectrically harder inhomogeneity attracts the MD.

When the MD is located inside the inhomogeneity, the curves of the interaction forces for the different
material constant ratios are almost indiscernible (Figs. 10-12). It is suggested that the effect of material
mismatch on the interaction forces is small for the single MD located inside the inhomogeneity. However,
when the MD is located outside the inhomogeneity, the mismatch effect is obvious.

D) ke >1, ky>1, ka<1.

The MD is repelled by the x;-axis and the x,-axis for the elastically, piezoelectrically harder and diclec-
trically softer inhomogeneity respectively. When the MD is located inside or outside the inhomogeneity, the
mismatch effect is significant.

6.2.2. Case for an ED coexisting with a MD (Figs. 13-15)

When the ED coexists with the MD, the interaction forces for the dislocation inside the inhomogeneity
vary greatly for the elastic mismatch (Fig. 13) compared to those for the MD alone (Fig. 10). For the elastic
and dielectric mismatch, the ED cannot significantly influence the interaction forces caused by the MD,
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(@) (b)

Fig. 10. (a) Variations of the dimensionless glide force F; with respect to different elastic mismatch ratios k. for the dislocation on the
xi-axis with Burgers vector b*/2b = {1,0,0,0}. (b) Variations of the dimensionless climb force F, with respect to different elastic
mismatch ratios k. for the dislocation on the x,-axis with Burgers vector b*/2b = {1,0,0,0}.

25

Fig. 11. (a) Variations of the dimensionless glide force 7 with respect to different piezoelectric mismatch ratios k; for the dislocation on
the x;-axis with Burgers vector b*/2b = {1,0,0,0}. (b) Variations of the dimensionless climb force F> with respect to different pi-
ezoelectric mismatch ratios k, for the dislocation on the x,-axis with Burgers vector b*/2b = {1,0,0,0}.

except the case k. < 1, kg > 1 and the dislocation is located inside the inhomogeneity (viz. except the regions
of the third quadrant in Figs. 13 and 15).

It can be seen that the piezoelectric mismatch effect is more profound than the elastic mismatch and
dielectric mismatch effects (Fig. 14), the sign of the interaction glide and climb forces for &k, = 10 and k;, = 2
(Fig. 14) are totally reversed compared to those of Fig. 11. There exists an unstable equilibrium position
for the glide force for k, = 10 and &, = 2 when the dislocation located outside the inhomogeneity (Fig.
14a); an stable equilibrium position for the interaction climb forces exists for the dislocation inside the
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(a) (b)

Fig. 12. (a) Variations of the dimensionless glide force F; with respect to different dielectric mismatch ratios kq4 for the dislocation on the
xj-axis with Burgers vector b*/2b = {1,0,0,0}. (b) Variations of the dimensionless climb force F> with respect to different dielectric
mismatch ratios k4 for the dislocation on the x,-axis with Burgers vector b*/2b = {1,0,0,0}.

Fig. 13. (a) Variations of the dimensionless glide force F; with respect to different elastic mismatch ratios k. for the dislocation on the
x;-axis with Burgers vector b*/2b = {1,0,0,10°}. (b) Variations of the dimensionless climb force F> with respect to different elastic
mismatch ratios k. for the dislocation on the x,-axis with Burgers vector b*/26 = {1,0,0, 10°}.

inhomogeneity for k, = 0.1 and k, = 0 (Fig. 14b). The piezoelectric mismatch effect is not large for the
dislocation located outside the inhomogeneity for k, < 1 (Fig. 14). The interaction forces by a single ED for
different piezoelectric mismatches (Fig. 16) are supplied to illustrate its effect on the MD. For &, > 1, the
interaction forces are negative (Fig. 16) which are positive in Fig. 11; for k, < 1, the interaction forces are
positive (Fig. 16) which are negative in Fig. 11. Therefore, the equilibrium position in Fig. 14 may be
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(a) (b)

Fig. 14. (a) Variations of the dimensionless glide force F; with respect to different piezoelectric mismatch ratios &, for the dislocation on
the x;-axis with Burgers vector b*/2b = {1,0,0,10°}. (b) Variations of the dimensionless climb force F> with respect to different pi-
ezoelectric mismatch ratios k, for the dislocation on the x,-axis with Burgers vector b*/2b = {1,0,0,10°}.

Fig. 15. (a) Variations of the dimensionless glide force F; with respect to different dielectric mismatch ratios k4 for the dislocation on the
x1-axis with Burgers vector b*/2b = {1,0,0, 10°}. (b) Variations of the dimensionless climb force £ with respect to different dielectric
mismatch ratios k4 for the dislocation on the x,-axis with Burgers vector b*/2b = {1,0,0,10°}.

explained by the cancellation of the interaction forces caused by the MD (Fig. 11) and the ED (Fig. 16) and
their coupling effects between the MD and the ED. These piezoelectric mismatch plots suggest that when
the inhomogeneity is piezoelectrically harder and the elastic and dielectric properties of the matrix and
inhomogeneity are approximately the same, the piezoelectric mismatch may significantly change the in-
teraction forces even the attribute of them when the ED coexists with the MD.
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(@) (b)

Fig. 16. (a) Variations of the dimensionless glide force F} with respect to different piezoelectric mismatch ratios &, for the dislocation on
the x;-axis with Burgers vector b*/2b = {0,0,0,10°}. (b) Variations of the dimensionless climb force F; with respect to different piezo-
electric mismatch ratios &, for the dislocation on the x,-axis with Burgers vector b*/2b = {0,0,0,10°}.

7. Conclusions

In this paper, Green functions for an infinite piezoelectric media with an elliptic piezoelectric inhomo-
geneity are given for an electro-mechanical force and electro-mechanical line dislocation that may be lo-
cated outside, inside the inhomogeneity or on the interface of elliptic boundary of inhomogeneity.
Expressions of Green functions are identical when the generalized force and the generalized dislocation
approach to the elliptic boundary from points outside or inside the inhomogeneity. The interaction electric
enthalpy between inhomogeneity and dislocation is given, which can be used to find the forces on the
dislocation owing to existence of the inhomogeneity. Numerical illustrations and discussions for the in-
teraction forces are given. The results manifest that the electric dislocation can increase or decrease the
interaction forces between the mechanical dislocation and inhomogeneity depending on the position of the
dislocation. The mismatch of the material properties and the position of the dislocation significantly in-
fluence the interaction forces. It is found that the mismatch effect on the interaction forces is not significant
for certain cases.
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Appendix A

¢ =AY BV, ¢ =AQF +BY'b,

I = dlag[17 0,0, 0]7 L= dlag[07 1,0, O]a I; = dlag[oa 0,1, 0]7 L= dlag[07 0,0, l]a
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where Y, and y, are given in the following for case 1 and case 2.

Case 1. Constant vectors for the dislocation outside the inhomogeneity

_ _ -l -1 -l T o B
q) =BY I(M(‘) M ) (M<2> v )B<1>Im?’

-1
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Vi :;B (Ta/f) U T =G

1 1 !
u = —Elm{AQ)(ln cq?}, @ = —;Im{B(2)<ln cq?}, ¢ =>"q).
=1

Case 2: Constant vectors for the dislocation inside the inhomogeneity

_ _ _ -1 -1 _ -1 _ -1 . . -1
q)) =B (M<‘> em? ) {(M<2) . )Bmlﬂﬁf’c + oM Re[B2I,q3 — BVq7]
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1
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1 4
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